Functions to compute a Gaussian kernel.
gaussian_kernel_confidence(
vertical_r0 = 0.05,
vertical_sd = 1,
horizontal_r0 = vertical_r0,
horizontal_sd = vertical_sd,
tail_included = TRUE
)
gaussian_kernel_radius(
vertical_radius,
vertical_sd = 1,
horizontal_radius = vertical_radius,
horizontal_sd = vertical_sd,
tail_included = TRUE
)
[numeric] The kernel's r0 (exponential) in the vertical dimension.
[numeric] The kernel's standard deviation in the vertical dimension.
[numeric] The kernel's r0 (exponential) in the horizontal dimension.
[numeric] The kernel's standard deviation in the horizontal dimension.
[logical] Whether or not to include the kernel tail.
[numeric] The kernel's radius in the vertical dimension.
[numeric] The kernel's radius in the horizontal dimension.
A matrix
corresponding to the kernel.
gaussian_kernel_confidence(vertical_r0 = 0.4, vertical_sd = 1,
horizontal_r0 = 0.5, horizontal_sd = 2)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.01514034 0.01166897 0.01318859 0.01166897 0.01514034
#> [2,] 0.05478271 0.04222215 0.04772063 0.04222215 0.05478271
#> [3,] 0.08678126 0.06688409 0.07559422 0.06688409 0.08678126
#> [4,] 0.05478271 0.04222215 0.04772063 0.04222215 0.05478271
#> [5,] 0.01514034 0.01166897 0.01318859 0.01166897 0.01514034
gaussian_kernel_confidence(vertical_r0 = 0.4, vertical_sd = 1,
horizontal_r0 = 0.5, horizontal_sd = 2)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 0.01514034 0.01166897 0.01318859 0.01166897 0.01514034
#> [2,] 0.05478271 0.04222215 0.04772063 0.04222215 0.05478271
#> [3,] 0.08678126 0.06688409 0.07559422 0.06688409 0.08678126
#> [4,] 0.05478271 0.04222215 0.04772063 0.04222215 0.05478271
#> [5,] 0.01514034 0.01166897 0.01318859 0.01166897 0.01514034