R/getScenarioDefaults.R
getScenarioDefaults.Rd
Returns default parameter values for simulations of example
demographic trajectories. See simulateObservations()
for additional details.
getScenarioDefaults(
paramTable = NULL,
iFire = 0,
iAnthro = 0,
obsAnthroSlope = 2,
projAnthroSlope = 2,
rSlopeMod = 1,
sSlopeMod = 1,
rQuantile = 0.5,
sQuantile = 0.5,
projYears = 35,
obsYears = 15,
preYears = 0,
N0 = 1000,
assessmentYrs = 3,
qMin = 0,
qMax = 0.6,
uMin = 0,
uMax = 0.2,
zMin = 0,
zMax = 0.2,
cowMult = 6,
collarInterval = NA,
cowCount = NA,
collarCount = NA,
startYear = NA,
interannualVar = list(eval(formals(caribouPopGrowth)$interannualVar)),
curYear = 2023
)
a data.frame with column names matching the arguments below. Any columns that are missing will be filled with the default values.
number. Initial fire disturbance percentage.
number. Initial anthropogenic disturbance percentage
number. Percent change in anthropogenic disturbance per year in the observation period
number. Percent change in anthropogenic disturbance per year in the projection period
number. Disturbance-recruitment slope multiplier
number. Disturbance-survival slope multiplier
number in 0, 1. Recruitment quantile
number in 0, 1. Survival quantile
Number of years of projections
Number of years of observations
Number of years before monitoring begins
Number or vector of numbers. Initial population size for one or more sample populations.
Number of years over which to assess population growth rate lambda.
number in 0, 1. Minimum ratio of bulls to cows in composition survey groups.
number in 0, 1. Maximum ratio of bulls to cows in composition survey groups.
number in 0, 1. Minimum probability of misidentifying young bulls as adult females and vice versa in composition survey.
number in 0, 1. Maximum probability of misidentifying young bulls as adult females and vice versa in composition survey.
number in 0, 1. Minimum probability of missing calves in composition survey.
number in 0, <1. Maximum probability of missing calves in composition survey.
number >= 1. The apparent number of adult females per collared animal in composition survey. Set to NA to use cowCount
.
number. Optional. Number of years between collar deployments. If missing assumed to be every year
Optional. Only used in runScnSet()
to set the number of cows per
year in recruitment survey
number >= 1. The target number of collars active each year. Set to NA to use freqStartsPerYear
in simulateObservations()
year. First year in observation period. Optional, if not provided
it will be calculated from curYear
and obsYears
list or logical. List containing interannual
variability parameters. These can be either coefficients of variation
(R_CV, S_CV), beta precision parameters (R_phi, S_phi),
or random effects parameters from a logistic glmm (R_annual, S_annual).
Set to FALSE
to ignore interannual variability.
year. The current year. All years before are part of the observation period and years after are part of the projection period.
a data.frame of parameter values including a label that combines all the parameter names and values into a string
Caribou demography functions:
caribouBayesianPM()
,
caribouPopGrowth()
,
compositionBiasCorrection()
,
demographicCoefficients()
,
demographicProjectionApp()
,
demographicRates()
,
getOutputTables()
,
getPriors()
,
getSimsNational()
,
plotRes()
,
popGrowthTableJohnsonECCC
,
runScnSet()
,
simulateObservations()
getScenarioDefaults()
#> # A tibble: 1 × 25
#> iFire iAnthro obsAnthroSlope projAnthroSlope rSlopeMod sSlopeMod rQuantile
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 0 2 2 1 1 0.5
#> # ℹ 18 more variables: sQuantile <dbl>, projYears <dbl>, obsYears <dbl>,
#> # preYears <dbl>, N0 <dbl>, assessmentYrs <dbl>, qMin <dbl>, qMax <dbl>,
#> # uMin <dbl>, uMax <dbl>, zMin <dbl>, zMax <dbl>, cowMult <dbl>,
#> # interannualVar <list>, curYear <dbl>, ID <int>, label <chr>,
#> # startYear <dbl>
# paramTable list takes precedence over argument values
getScenarioDefaults(paramTable = data.frame(iFire = 10, iAnthro = 20, obsYears = 1), obsYears = 5)
#> iFire iAnthro obsAnthroSlope projAnthroSlope rSlopeMod sSlopeMod rQuantile
#> 1 10 20 2 2 1 1 0.5
#> sQuantile projYears obsYears preYears N0 assessmentYrs qMin qMax uMin uMax
#> 1 0.5 35 1 0 1000 3 0 0.6 0 0.2
#> zMin zMax cowMult interannualVar curYear ID
#> 1 0 0.2 6 0.46000, 0.08696 2023 1
#> label
#> 1 ID1_curYear2023_interannualVarlist(R_CV = 0.46, S_CV = 0.08696)_cowMult6_zMax0.2_zMin0_uMax0.2_uMin0_qMax0.6_qMin0_assessmentYrs3_N01000_preYears0_obsYears1_projYears35_sQuantile0.5_rQuantile0.5_sSlopeMod1_rSlopeMod1_projAnthroSlope2_obsAnthroSlope2_iAnthro20_iFire10_
#> startYear
#> 1 2023