Default parameters for simulation of example demographic trajectories.
Source:R/getScenarioDefaults.R
getScenarioDefaults.Rd
Returns default parameter values for simulations of example
demographic trajectories. See simulateObservations()
for additional details.
Usage
getScenarioDefaults(
paramTable = NULL,
iFire = 0,
iAnthro = 0,
obsAnthroSlope = 2,
projAnthroSlope = 2,
rSlopeMod = 1,
sSlopeMod = 1,
lQuantile = NA,
sQuantile = NA,
rQuantile = NA,
correlateRates = F,
projYears = 35,
obsYears = 15,
preYears = 0,
N0 = 1000,
qMin = 0,
qMax = 0,
uMin = 0,
uMax = 0,
zMin = 0,
zMax = 0,
cowMult = 6,
collarInterval = NA,
cowCount = NA,
collarCount = NA,
startYear = NA,
interannualVar = list(eval(formals(caribouPopGrowth)$interannualVar)),
curYear = 2023
)
Arguments
- paramTable
a data.frame with column names matching the arguments below. Any columns that are missing will be filled with the default values.
- iFire
number. Initial fire disturbance percentage.
- iAnthro
number. Initial anthropogenic disturbance percentage
- obsAnthroSlope
number. Percent change in anthropogenic disturbance per year in the observation period
- projAnthroSlope
number. Percent change in anthropogenic disturbance per year in the projection period
- rSlopeMod
number. Disturbance-recruitment slope multiplier
- sSlopeMod
number. Disturbance-survival slope multiplier
- lQuantile
number in 0, 1. Lambda quantile
- sQuantile
number in 0,1. Survival quantile.
- rQuantile
number in 0,1. Recruitment quantile.
- correlateRates
logical. Set TRUE to force correlation between recruitment and survival.
- projYears
Number of years of projections
- obsYears
Number of years of observations
- preYears
Number of years before monitoring begins
- N0
Number or vector of numbers. Initial population size for one or more sample populations. If NA then population growth rate is $_t=S_t*(1+cR_t)/s$.
- qMin
number in 0, 1. Minimum ratio of bulls to cows in composition survey groups.
- qMax
number in 0, 1. Maximum ratio of bulls to cows in composition survey groups.
- uMin
number in 0, 1. Minimum probability of misidentifying young bulls as adult females and vice versa in composition survey.
- uMax
number in 0, 1. Maximum probability of misidentifying young bulls as adult females and vice versa in composition survey.
- zMin
number in 0, 1. Minimum probability of missing calves in composition survey.
- zMax
number in 0, <1. Maximum probability of missing calves in composition survey.
- cowMult
number >= 1. The apparent number of adult females per collared animal in composition survey. Set to NA to use
cowCount
.- collarInterval
number. Optional. Number of years between collar deployments. If missing assumed to be every year
- cowCount
Optional. Only used in
runScnSet()
to set the number of cows per year in recruitment survey- collarCount
number >= 1. The target number of collars active each year. Set to NA to use
freqStartsPerYear
insimulateObservations()
- startYear
year. First year in observation period. Optional, if not provided it will be calculated from
curYear
andobsYears
- interannualVar
list or logical. List containing interannual variability parameters. These can be either coefficients of variation (R_CV, S_CV), beta precision parameters (R_phi, S_phi), or random effects parameters from a logistic glmm (R_annual, S_annual). Set to
FALSE
to ignore interannual variability.- curYear
year. The current year. All years before are part of the observation period and years after are part of the projection period.
Value
a data.frame of parameter values including a label that combines all the parameter names and values into a string
See also
Caribou demography functions:
bbouMakeSummaryTable()
,
caribouBayesianPM()
,
caribouPopGrowth()
,
caribouPopSimMCMC()
,
compositionBiasCorrection()
,
demographicCoefficients()
,
demographicProjectionApp()
,
demographicRates()
,
doSim()
,
getBBNationalInformativePriors()
,
getOutputTables()
,
getPriors()
,
getSimsInitial()
,
getSimsNational()
,
plotRes()
,
popGrowthTableJohnsonECCC
,
runScnSet()
,
simulateObservations()
Examples
getScenarioDefaults()
#> # A tibble: 1 × 23
#> iFire iAnthro obsAnthroSlope projAnthroSlope rSlopeMod sSlopeMod
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 0 2 2 1 1
#> # ℹ 17 more variables: correlateRates <lgl>, projYears <dbl>, obsYears <dbl>,
#> # preYears <dbl>, N0 <dbl>, qMin <dbl>, qMax <dbl>, uMin <dbl>, uMax <dbl>,
#> # zMin <dbl>, zMax <dbl>, cowMult <dbl>, interannualVar <list>,
#> # curYear <dbl>, ID <int>, label <chr>, startYear <dbl>
# paramTable list takes precedence over argument values
getScenarioDefaults(paramTable = data.frame(iFire = 10, iAnthro = 20, obsYears = 1), obsYears = 5)
#> iFire iAnthro obsAnthroSlope projAnthroSlope rSlopeMod sSlopeMod
#> 1 10 20 2 2 1 1
#> correlateRates projYears obsYears preYears N0 qMin qMax uMin uMax zMin zMax
#> 1 FALSE 35 1 0 1000 0 0 0 0 0 0
#> cowMult interannualVar curYear ID
#> 1 6 0.46000, 0.08696 2023 1
#> label
#> 1 ID1_curYear2023_interannualVarlist(R_CV = 0.46, S_CV = 0.08696)_cowMult6_zMax0_zMin0_uMax0_uMin0_qMax0_qMin0_N01000_preYears0_obsYears1_projYears35_correlateRatesFALSE_sSlopeMod1_rSlopeMod1_projAnthroSlope2_obsAnthroSlope2_iAnthro20_iFire10_
#> startYear
#> 1 2023