Create summary table of demographic rates from survival and recruitment surveys
Source:R/bbouMakeSummaryTable.R
bbouMakeSummaryTable.Rd
Create summary table of demographic rates from survival and recruitment surveys
Usage
bbouMakeSummaryTable(
surv_data,
recruit_data,
N0 = NA,
disturbance = NULL,
priors = NULL,
shiny_progress = FALSE,
return_mcmc = FALSE,
i18n = NULL,
niters = formals(bboutools::bb_fit_survival)$niters,
nthin = formals(bboutools::bb_fit_survival)$nthin,
...
)
Arguments
- surv_data
dataframe. Survival data in bboudata format
- recruit_data
dataframe. Recruitment data in bboudata format
- N0
dataframe. Optional. Initial population estimates, required columns are PopulationName and N0
- disturbance
dataframe. Optional. If provided, fit a Beta model that includes disturbance covariates.
- priors
list. Optional. If disturbance is NA, this should be list(priors_survival=c(...),priors_recruitment=c(...)); see
bboutools::bb_priors_survival
andbboutools::bb_priors_recruitment
for details. If disturbance is not NA, seegetPriors
for details.- shiny_progress
logical. Should shiny progress bar be updated. Only set to TRUE if using in an app.
- return_mcmc
boolean. If TRUE return fitted survival and recruitment models. Default FALSE.
- niters
integer. The number of iterations per chain after thinning and burn-in.
- nthin
integer. The number of the thinning rate.
- ...
Other parameters passed on to
bboutools::bb_fit_survival
andbboutools::bb_fit_recruitment
.
Value
If return_mcmc
is TRUE then a list with results and fitted models,
if FALSE just the results table is returned.
See also
Caribou demography functions:
caribouBayesianPM()
,
caribouPopGrowth()
,
caribouPopSimMCMC()
,
compositionBiasCorrection()
,
demographicCoefficients()
,
demographicProjectionApp()
,
demographicRates()
,
doSim()
,
getBBNationalInformativePriors()
,
getOutputTables()
,
getPriors()
,
getScenarioDefaults()
,
getSimsInitial()
,
getSimsNational()
,
plotRes()
,
popGrowthTableJohnsonECCC
,
runScnSet()
,
simulateObservations()
Examples
s_data <- rbind(bboudata::bbousurv_a, bboudata::bbousurv_b)
r_data <- rbind(bboudata::bbourecruit_a, bboudata::bbourecruit_b)
bbouMakeSummaryTable(s_data, r_data, N0 = 500)
#> Registered S3 method overwritten by 'mcmcr':
#> method from
#> as.mcmc.nlists nlist
#> pop_name R_bar R_sd R_iv_mean R_iv_shape R_bar_lower R_bar_upper
#> 1 A 0.1894674 0.08221914 0.3181985 27.36116 0.1641481 0.2145582
#> 2 B 0.2035216 0.10678741 0.3181985 27.36116 0.1711268 0.2375047
#> S_bar S_sd S_iv_mean S_iv_shape S_bar_lower S_bar_upper N0
#> 1 0.8819087 0.2362733 0.4909915 9.805237 0.8220255 0.9238527 500
#> 2 0.9051799 0.2828061 0.4909915 9.805237 0.8476911 0.9446732 500
#> nCollarYears nSurvYears nCowsAllYears nRecruitYears
#> 1 900 31 2353 27
#> 2 519 18 2001 15